Tabular Integration

It is tabular integration, as shown in Examples 6 and 7. repetitions are required, the calculations can be cumbersome. In situations like out difficulty, are natural candidates for integration by parts. However, if many this, there is a way to organize the calculations that saves a great deal of work ferentiated repeatedly to become zero and g can be integrated repeatedly with-We have seen that integrals of the form $\int f(x)g(x)dx$, in which f can be dif-

Example 6 USING TABULAR INTEGRATION

Evaluate $\int x^2 e^x dx$

Solution With $f(x) = x^2$ and $g(x) = e^x$, we list:

0	2	2x(-	x^2 (-	f(x) and its derivatives
→ e ^x	(+) \rightarrow e ^x	(-) • ex	(+) ex	g(x) and its integrals

ing to the operation signs above the arrows to obtain We combine the products of the functions connected by the arrows accord-

$$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C.$$

Compare this with the result in Example 4

Section 6.3 Exercises

differentiation. In Exercises 1-4, evaluate the integral. Confirm your answer by

1.
$$\int x \sin x \, dx$$

y ln y dy

2.
$$\int x^2 \cos x \, dx$$

superimposing the graph of one of the antiderivatives on a slope field of the integrand. In Exercises 5-8, evaluate the integral. Support your answer by

5.
$$\int x \sec^2 x \, dx$$

6.
$$\int \sin^{-1}\theta \ d\theta$$

Example 7 USING TABULAR INTEGRATION

Evaluate $\int x^3 \sin x \, dx$.

Solution With $f(x) = x^3$ and $g(x) = \sin x$, we list

	0	6	yr	3x ²	x ³	f(x) and its derivatives
	→ sin x	(-) • cos x	$(+)$ $\rightarrow -\sin x$	(-) • -cos x	$(+)$ $\sin x$	g(x) and its integrals
1						

according to the operation signs above the arrows to obtain Again we combine the products of the functions connected by the arrows

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + C.$$

7.
$$\int t^2 \sin t \, dt$$
 8.
$$\int t \csc^2 t \, dt$$

$$10. \int x^4 e^{-x} \, dx$$

9. $\int x^3 \ln x \, dx$

12.
$$\int x^3 e^{-2x} dx$$

11. $\int (x^2 - 5x)e^x dx$

14.
$$\int e^{-y} \cos y \, dy$$

13. $\int e^{y} \sin y \, dy$

In Exercises 15-18, evaluate the integral analytically. Support your answer using NINT.

15.
$$\int_0^{\pi/2} x^2 \sin 2x \, dx$$

16.
$$\int_{0}^{\pi/2} x^{3} \cos 2x \, dx$$

17.
$$\int_{-2}^{3} e^{2x} \cos 3x \, dx$$

18.
$$\int_{-2}^{2} e^{-2x} \sin 2x \, dx$$

In Exercises 19-22, solve the differential equation.

19.
$$\frac{dy}{dx} = x^2 e^{4x}$$

20.
$$\frac{dy}{dx} = x^2 \ln x$$

21.
$$\frac{dy}{d\theta} = \theta \sec^{-1}\theta$$
, $\theta > 1$ 22. $\frac{dy}{d\theta} = \theta \sec \theta \tan \theta$

22.
$$\frac{dy}{d\theta} = \theta \sec \theta \tan \theta$$

23. Finding Area Find the area of the region enclosed by the x-axis and the curve $y = x \sin x$ for

(a)
$$0 \le x \le \pi$$
,

(b)
$$\pi \le x \le 2\pi$$

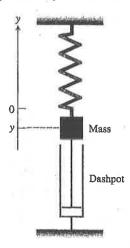
(c)
$$0 \le x \le 2\pi$$

24. Finding Area Find the area of the region enclosed by the y-axis and the curves $y = x^2$ and $y = (x^2 + x + 1)e^{-x}$.

25. Average Value A retarding force, symbolized by the dashpot in the figure, slows the motion of the weighted spring so that the mass's position at time t is

$$y=2e^{-t}\cos t,\quad t\geq 0.$$

Find the average value of y over the interval $0 \le t \le 2\pi$.



exploration

36. Consider the integral $\int x^n e^x dx$. Use integration by parts to evaluate the integral if

(a)
$$n = 1$$
.

(b)
$$n = 2$$
.

(c)
$$n = 3$$
.

(d) Conjecture the value of the integral for any positive

(e) Writing to Learn Give a convincing argument that your conjecture in (d) is true.

In Exercises 27-30, evaluate the integral by using a substitution prior to integration by parts.

27.
$$\int \sin \sqrt{x} \ dx$$

$$28. \int e^{\sqrt{3x+9}} dx$$

$$29. \int x^7 e^{x^2} dx$$

30.
$$\int \sin (\ln r) dr$$

In Exercises 31-34, use integration by parts to establish the reduction formula.

31.
$$\int x^n \cos x \, dx = x^n \sin x - n \int x^{n-1} \sin x \, dx$$

32.
$$\int x^n \sin x \, dx = -x^n \cos x + n \int x^{n-1} \cos x \, dx$$

33.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$$
, $a \neq 0$

34.
$$\int (\ln x)^n dx = x (\ln x)^n - n \int (\ln x)^{n-1} dx$$

Extending the Ideas

- 35. Integrating Inverse Functions Assume that the function f has an inverse.
 - (a) Show that $\int f^{-1}(x)dx = \int yf'(y) dy$. (Hint: Use the substitution $y = f^{-1}(x)$.)
 - (b) Use integration by parts on the second integral in (a) to

$$\int f^{-1}(x) \ dx = \int y f'(y) \ dy = x f^{-1}(x) - \int f(y) \ dy.$$

36. Integrating Inverse Functions Assume that the function f has an inverse. Use integration by parts directly to show that

$$\int f^{-1}(x) \ dx = x f^{-1}(x) - \int x \left(\frac{d}{dx} f^{-1}(x) \right) dx.$$

In Exercises 37-40, evaluate the integral using

- (a) the technique of Exercise 35.
- (b) the technique of Exercise 36.
- (c) Show that the expressions (with C = 0) obtained in parts
- (a) and (b) are the same.

$$37. \int \sin^{-1} x \, dx$$

$$38. \int \tan^{-1} x \, dx$$

$$39. \int \cos^{-1} x \, dx$$

$$40. \int \log_2 x \, dx$$